Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto

January 12, 2024

Marcin Peski (University of Toronto) Bargaining with Mechanisms and Two-Sided I

January 12, 202

Outline

Introduction

2 Model

- 3 Benchmarks
- Offer design
- 5 Random monopoly payoff bound
- 6 The Gap

Conclusions

- Business partners want to cease partnership. Their firm cannot be divided, and if one partner keeps it, the other expects a compensation.
- Two countries negotiate a peace treaty, with land swaps and reparations (or economic aid) on the table.
- Coalition parties negotiate an agreement with a support for policy traded off against number of cabinet positions.
- https://bwm-payoffs.streamlit.app/

- Bargaining one of the longest-studied problems in economic theory ("bilateral monopoly" before [Nash 50])
- No satisfactory solution for incomplete information:
 - cooperative solutions: (Harsanyi 72), (Myerson 84),
 - large literature on bargaining over prices:
 - one-sided: uniqueness in Coasian bargaining with a gap,
 - two-sided: large set of equilibria, possible refinements to eliminate some (Ausubel, Crampton, Deneckere 02 and others).
- Goal: show that a natural modification of a standard random-proposer bargaining has a "unique" outcome under
 - single good plus transfers environment,
 - private values (two types for each player).

- Bargaining with sophisticated offers in real world
 - menus,
 - menus of menus ("I divide, you choose"),
 - mediation, arbitration (example: "trial by gods"),
 - change in bargaining protocols,
 - deadlines or delays, etc.
- Challenges:
 - how to model mechanisms as actions?
 - signaling.

- Benchmarks:
- Complete information (Rubinstein 84)
- Informed principal with private values (Maskin Tirole, 90)
 - informed principal types get their monopoly payoff,
 - private information of the principal does not matter in private values case.
- One-sided incomplete information (Peski 22),
 - uninformed player and some of the informed player types get random monopoly payoff,

• Suppose each player has two types and, w.l.o.g., that $l_1 < l_2$.

• Suppose each player has two types and, w.l.o.g., that $l_1 < l_2$.

- **Theorem 1**: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As δ → 1, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

- Suppose each player has two types and, w.l.o.g., that $l_1 < l_2$.
- **Theorem 1**: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As δ → 1, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

- Suppose each player has two types and, w.l.o.g., that $l_1 < l_2$.
- **Theorem 1**: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As δ → 1, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

Outline

Model

- Bargaining game
- Mechanisms and Implementation
- Equilibrium
- Commitment
- 3 Benchmarks
- Offer design

6 The Gap

Marcin Pęski (University of Toronto) Bargaining with Mechanisms and Two-Sided January 12, 2

- Two players i = 1, 2, sometimes third player ("mediator").
- Single good and transfers
- Preferences: $q_i t_i \tau_i$,
 - t_i type (valuation) of player i,
 - q_i probability that pl. i gets the good,
 - τ_i transfer from player *i*
 - feasibility: $q_1+q_2\leq 1$, $q_i\geq 0$, $au_1+ au_2\leq 0$,

Bargaining game

- $\, \bullet \,$ multiple rounds until offer is accepted, discounting $\delta < 1,$
- random proposer: player i is chosen with prob. $\beta_i \geq 0,$ where $\beta_1 + \beta_2 = 1,$
- proposer offers a mechanism,
- if the offer is accepted, it is implemented, and the bargaining game ends.
- Perfect Bayesian Equilibrium:
 - no updating beliefs about player i after -i's action.
 - public randomization plus cheap talk.

$$u_i\left(t_i|q,\tau\right) = \sum_{t_{-i}} p\left(t_{-i}\right) \left(t_i q_i\left(t_i, t_{-i}\right) - \tau_i\left(t_i, t_{-i}\right)\right) \text{ for each } t_i.$$

• Allocation $q_i(.), \tau(.)$ is IC given beliefs p iff

 $u_i\left(t_i|q, au
ight)\geq\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$ for each $t_i,s_i.$

• Correspondence of feasible and IC payoffs:

 $\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$

$$u_i\left(t_i|q, au
ight) = \sum_{t_{-i}} p\left(t_{-i}
ight)\left(t_i q_i\left(t_i, t_{-i}
ight) - au_i\left(t_i, t_{-i}
ight)
ight)$$
 for each t_i .

• Allocation $q_{i}(.), \tau(.)$ is IC given beliefs p iff

$$u_i\left(t_i|q, au
ight)\geq\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$$
 for each $t_i,s_i.$

• Correspondence of feasible and IC payoffs:

 $\mathcal{U}(p) = \{ u(.|q,\tau) : (q,\tau) \text{ is IC given } p \} \subseteq R^{T_1 \cup T_2}.$

$$u_i\left(t_i|q, au
ight) = \sum_{t_{-i}} p\left(t_{-i}
ight)\left(t_i q_i\left(t_i, t_{-i}
ight) - au_i\left(t_i, t_{-i}
ight)
ight)$$
 for each t_i .

• Allocation $q_i(.), \tau(.)$ is IC given beliefs p iff

$$u_i\left(t_i|q, au
ight)\geq\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$$
 for each $t_i,s_i.$

• Correspondence of feasible and IC payoffs:

 $\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$

$$u_i\left(t_i|q, au
ight) = \sum_{t_{-i}} p\left(t_{-i}
ight)\left(t_i q_i\left(t_i, t_{-i}
ight) - au_i\left(t_i, t_{-i}
ight)
ight)$$
 for each t_i .

• Allocation $q_{i}(.), \tau(.)$ is IC given beliefs p iff

$$u_i\left(t_i|q, au
ight)\geq\sum_{t_{-i}}p\left(t_{-i}
ight)\left(t_iq_i\left(s_i,t_{-i}
ight)- au_i\left(s_i,t_{-i}
ight)
ight)$$
 for each $t_i,s_i.$

• Correspondence of feasible and IC payoffs:

$$\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$$

 $u_i\left(t_i|q, au
ight) = \sum_{t_{-i}} p\left(t_{-i}
ight)\left(t_i q_i\left(t_i, t_{-i}
ight) - au_i\left(t_i, t_{-i}
ight)
ight)$ for each t_i .

• Allocation $q_i(.), \tau(.)$ is IC given beliefs p iff

 $u_i\left(t_i|q, au
ight) \geq \sum_{t_{-i}} p\left(t_{-i}
ight)\left(t_i q_i\left(s_i, t_{-i}
ight) - au_i\left(s_i, t_{-i}
ight)
ight)$ for each t_i, s_i .

• Correspondence of feasible and IC payoffs:

 $\mathcal{U}(p) = \{u(.|q,\tau) : (q,\tau) \text{ is IC given } p\} \subseteq R^{T_1 \cup T_2}.$

- Game G:
 - players: 1, 2, and mediator (whose payoff is a non-negative transfer),
 - finite or compact actions,
 - continuous outcome function that maps actions to an allocation of a good and a transfer,
 - always assume public randomization.
- For each p, the set of equilibrium payoff vectors

$$m(p;G) \subseteq \mathcal{U}(p).$$

• Equilibrium correspondence:

$$m(.; G): \Delta T \rightrightarrows R^{T_1 \cup T_2}, m_G \subseteq \mathcal{U}.$$

- Real mechanism is a correspondence m for which there exists a game G such that m = m(.; G).
- Real mechanism *m* is
 - u.h.c.,
 - $m \subseteq \mathcal{U}$,
 - non-empty-valued, and
 - convex valued.

• (Abstract) mechanism is correspondence m st.

- *m* is u.h.c.,
- $m \subseteq \mathcal{U}$,
- non-empty valued,
- it can be *approximated* by continuous functions $m_n : \Delta T \to R^{T_1 \cup T_2}$, $m_n \subseteq U$ such that

$$\lim_{n\to\infty}\max_{p}\max_{v,q:v\in m(q)}d\left(\left(m_{n}\left(p\right),p\right),\left(v,q\right)\right)=0,$$

where *d* is the Euclidean distance on $\Delta T \times R^{T_1 \cup T_2}$.

• The space of mechanism is compact* under Hausdorff distance induced by *d*.

Theorem

Any real mechanism is an (abstract) mechanism. For any (abstract) mechanism m, there is a sequence of real mechanisms m_n that "approximate" m:

$$\lim_{n\to\infty}\max_{u,p:u\in m_n(p)}\min_{v,q:v\in m(q)}d\left((u,p),(v,q)\right)=0$$

- First part: use Michael's Theorem.
- Second part: construct a game:
 - mediator names the beliefs p,
 - given *p*, use virtual Bayesian implementation of (Abreu Matsushima 92).

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- *MM_i*(*A*) menu of mechanisms *a* ∈ *A* for player *i* (including p.r. and cheap talk by *i*).
- *IP_i*(*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- MM_i (A) menu of mechanisms a ∈ A for player i (including p.r. and cheap talk by i).
- *IP_i* (*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- MM_i (A) menu of mechanisms a ∈ A for player i (including p.r. and cheap talk by i).
- *IP_i* (*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- MM_i (A) menu of mechanisms a ∈ A for player i (including p.r. and cheap talk by i).
- *IP_i* (*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- $MM_i(A)$ menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- *IP_i*(*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- δm discounted mechanism m.
- *I_i*(*m*) information revelation game: public randomization plus *i*'s cheap talk followed by *m*.
- MM_i (A) menu of mechanisms a ∈ A for player i (including p.r. and cheap talk by i).
- *IP_i*(*m*) informed principal problem of player *i* with continuation mechanism (i.e., outside option) *m*,

• Bargaining mechanism : the largest fixed point ${\mathcal B}$ of

$$\mathcal{B} = (\mathit{IP}_{1}(\delta \mathcal{B}))^{\beta_{1}}(\mathit{IP}_{2}(\delta \mathcal{B}))^{\beta_{2}}$$

- Equilibrium: definition
 - modular (one-shot deviation principle), extends to the existence in bargaining game,
 - $\bullet~\mathsf{PBE}=\mathsf{WPBE}$ + "no updating after the other player actions",
 - if restricted to real mechanisms, approximate (i.e., ε -like) equilibrium.
- Equilibrium: existence
 - space of (abstract) mechanisms is compact,
 - if A finite, approximate each mechanism by a payoff function and apply Brouwer FPT,
 - extend to compact A (cheap talk is important),
 - public randomization is important.

- Players are not committed to future offers.
- Players are committed to implementing a mechanism once offered and accepted:
 - hence, less commitment than in the *limited commitment* literature (V. Skreta and L. Doval).
- Relevant for many situations
 - good allocation with no backsies,
 - bargaining over protocol,
- Lack of commitment is a restriction on the space of mechanisms,
- Commitment is not necessarily helpful to the agent who can exercise it.

Outline

Benchmarks

- Complete information
- Informed principal
- One-sided incomplete information

Offer design

6 The Gap

- Claim: Assume t₁ < t₂ are known. Then, in each equilibrium, player i gets β_it₂.
- Special features:
 - linearly transferable payoffs,
 - endogenous interdependent value:
 - total surplus $= t_2$,
 - each player gets share of surplus equal to their bargaining power:

- Claim: Assume t₁ < t₂ are known. Then, in each equilibrium, player i gets β_it₂.
- **Proof**: Suppose i = 1 (the other argument is analogous). Let

$$x^* = \frac{1}{t_2} \min_{u \in \mathcal{B}} u_1.$$

• If $x^* < \beta_1$, player 1 has a profitable deviation:

- reject any offer of player 2,
- player 1 offer: player 2 gets the good and pays $(1 \delta (1 x^*)) t_2$ to player 1,
- the offer will be accepted.

(Random) informed principal with private values (β_i = 1 or δ = 0):
monopoly payoff:

$$M(t_i; p_{-i}) = \max_{\tau} p_{-i} (t_{-i} \leq \tau) t_i + (1 - p_{-i} (t_{-i} \leq \tau)) \tau,$$

- If player *i* is a proposer, she offers the monopoly price to -i, which is accepted (the game ends),
- *i*'s expected payoff is $M(t_i; p_{-i})$.
- Special features:
 - continuation value = 0 (and it does not depend on beliefs)
 - private information of the principal does not matter due to private values.

- One-sided incomplete information $(p_i \in \{0, 1\}, i.e., i \text{ is uninformed})$:
- The equilibrium payoffs are unique and implemented by random monopoly mechanism:
 - with probability β_j , agent j gets the good:
 - if so, she offers monopoly price to -j,
 - player *i*'s expected payoff of $\beta_i M(t_i; p_{-i})$,
 - some player -i's types may get a bit more than $\beta_{-i}M(t_{-i}; p_i)$,
- Special features:
 - random monopoly mechanism is interim efficient.
Outline

Offer design

- Accept or reject decisions
- Signaling

• *i* makes an offer, -i decides whether to accept or reject:

$$IP_i(m) = MM_i \{ MM_{-i} \{ m, a \} : a \text{ is mechanism} \}.$$

- Goal: design offers that will be accepted.
- Two problems:
 - $\bullet\,\Rightarrow\,{\rm player}\,-i$ may have reasons to refuse the offer,
 - signaling: (possibly, off-path) offers lead to belief updating $p_i
 ightarrow q_i$.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

- *m* is a continuation mechanism.
- *a* is an offer that is accepted exactly as it is.

Definition

Mechanism *a* is an offer that player -i cannot refuse given *m*, if $\forall p_i, p_{-i}, q_{-i}, \forall u \in a(p_i, p_{-i})$, and $\forall v \in m(p_i, q_{-i})$,

u is undominated by v.

Definition

Mechanism *a* is an offer that player -i cannot refuse given *m*, if $\forall p_i, p_{-i}, q_{-i}, \forall u \in a(p_i, p_{-i})$, and $\forall v \in m(p_i, q_{-i})$,

u is q_{-i} -undominated by v.

(i.e., there is a q_{-i} -positive prob. type t_{-i} such that $u_{-i}(t_{-i}) \ge v_{-i}(t_{-i})$).

Lemma

Suppose that

- a is an offer that player -i strictly cannot refuse given mechanism m and
- a is a payoff function st. $I_{-i}(a) = a$. Then,

 MM_{-i} {m, a} $\subseteq a$.

• For any two mechanisms *m* and *a*, there alwats exists a continuous $w : \Delta T \to \mathbb{R}$ such that

$$(a + _{-i} w)_{j}(p) = \begin{cases} a_{i}(p) + w(p) & j = -i \\ a_{i}(p) - w(p) & j = i \end{cases}$$

cannot be refused by -i given continuation m.

- Two problems:
 - player -i may have reasons to refuse the offer,
 - \Rightarrow signaling: (possibly, off-path) offers lead to belief updating $p_i \rightarrow q_i$.
- If $u \in IP_i(m)(p_i, p_{-i})$ is an equilibrium payoff in the informed principal with continuation m, and a is an offer that cannot be refused, then there must be belief q_i and continuation payoff $v \in a(q_i, p_{-i})$ st.

 $u_i \geq v_i$.

Outline

Offer design

Random monopoly payoff bound
 Random monopoly bound
 Proof

- From now on, assume two types for each player T_i = {l_i, h_i}:
 p_i probability of type h_i.
- W.I.o.g. $I_1 < I_2$. I focus on

$$0 \leq l_1 < l_2 < h_1 < h_2.$$

Theorem

For each $\delta < 1$, each $u \in \mathcal{B}(p)$, each player *i*, each t_i ,

 $u_i(t_i) \geq \beta_i M_i(t_i; p_{-i})$

Marcin Peski (University of Toronto) Bargaining with Mechanisms and Two-Sided I January 12,

- Each player gets at least their random monopoly payoff.
- In many cases, Theorem 2 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
 - $\beta_i \in \{0,1\}$,
 - $p_i \in \{0,1\}$ for one of the players,

•
$$l_1 = l_2$$
 or $l_2 = h_1$ or $h_1 = h_2$.

 In general, there is a gap between random monopoly payoffs and efficiency.

- The idea is to reproduce the complete info argument. Fix player *i*.
- The smallest equilibrium random monopoly share:

$$x^* = \min_{u \in \mathcal{B}} \min_{t_i} \frac{u_i}{M_i(t_i; p_{-i})}.$$

Random monopoly Proof:

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right) = \left\{u \in \mathcal{U}\left(p\right) : u_{i} \geq xM_{i}\left(.; p_{-i}\right)\right\}.$$

Then,

$$\mathcal{B}\subseteq A_{x^*}^i.$$

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i.$$

• Instead of delay, with prob. δ , deliver the payoffs now, and, with prob. $1 - \delta$, give player *i* his monopoly payoff.

Random monopoly Proof:

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right) = \left\{u \in \mathcal{U}\left(p\right) : u_{i} \geq xM_{i}\left(.; p_{-i}\right)\right\}.$$

Then,

$$\mathcal{B} \subseteq A_{x^*}^i$$
.

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i.$$

• Instead of delay, with prob. δ , deliver the payoffs now, and, with prob. $1 - \delta$, give player *i* his monopoly payoff.

• The set of all feasible and IC payoffs that give player *i* at least *x* share of her monopoly payoffs:

$$A_{x}^{i}\left(p\right) = \left\{u \in \mathcal{U}\left(p\right) : u_{i} \geq xM_{i}\left(.; p_{-i}\right)\right\}.$$

Then,

$$\mathcal{B} \subseteq A_{x^*}^i$$
.

We check that

$$\delta \mathcal{B} \subseteq \delta A_{x^*}^i \subseteq A_{1-\delta(1-x^*)}^i.$$

• Instead of delay, with prob. δ , deliver the payoffs now, and, with prob. $1 - \delta$, give player *i* his monopoly payoff.

- Goal: find mechanism *a* st.
 - a cannot be refused given $A_{1-\delta(1-x^*)}^i$ and
 - $a \subseteq A^i_{1-\delta(1-x^*)}$, i.e, each type t_i receives payoff at least

$$\geq (1 - \delta (1 - x^*)) M_i(t_i; p_{-i}).$$

 If x^{*} < β_i, complete information argument shows that player i has a profitable deviation.

Lemma

For each x, there exists mechanism $a^{i}(x) \subseteq A_{x}^{i}$ such that

- $a^{i}(x)$ cannot be refused given A_{x}^{i} ,
- $a^{i}(x)$ is (mostly) payoff function such that $I_{-i}(a^{i}(x)) = a^{i}(x)$.

Outline

Introduction

- Offer design
- 5 Random monopoly payoff bound

Conclusions

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest *ex ante* (expected) payoffs and random monopoly payoffs:

$$\operatorname{Gap}(p) = \max_{u \in \mathcal{U}(p) \text{ st. } \forall_{i,t_i} u_i(t) \geq \beta_i M_i(t_i|p)} p_1 \cdot (u_1 - \beta_1 M_1(.|p))$$

• The gap is not larger than

 $\operatorname{Gap}(p) \leq 6.25\%$ of h_2 for all p.

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest *ex ante* (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(p\right) = \max_{u \in \mathcal{U}(p) \text{ st. } \forall_{i,t_i}u_i(t) \geq \beta_i M_i(t_i|p)} p_1 \cdot \left(u_1 - \beta_1 M_1\left(.|p\right)\right)$$

The gap is not larger than

 $\operatorname{Gap}(p) \leq 6.25\%$ of h_2 for all p.

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest *ex ante* (expected) payoffs and random monopoly payoffs:

$$\mathsf{Gap}\left(\boldsymbol{\rho}\right) = \max_{\boldsymbol{u} \in \mathcal{U}(\boldsymbol{\rho}) \text{ st. } \forall_{i,t_i} u_i(t) \geq \beta_i M_i(t_i | \boldsymbol{\rho})} p_1 \cdot \left(u_1 - \beta_1 M_1\left(. | \boldsymbol{\rho}\right)\right)$$

• The gap is not larger than

$$\operatorname{Gap}(p) \leq 6.25\%$$
 of h_2 for all p .

Theorem

For each p,

$$\lim_{\delta \to 1} \sup_{u \in \mathcal{B}(p)} |p_1 \cdot u_1 - [p_1 \cdot \beta_1 M_1(.|p) + Gap(p)]| = 0.$$

- As $\delta \rightarrow 1$, player 1 equilibrium *ex ante* payoffs converge to maximum possible subject to feasibility, IC, and random monopoly constraint.
 - player 1's payoffs are determined uniquely in ex ante sense,
 - player 2's payoffs are determined uniquely in the *interim* sense.

• Player 1 (i.e., $l_1 < l_2$) gets the entire Gap!

• a^2 is an example of mechanism attaining such payoffs.

• Why?

• mix and match offers that cannot be refused:

•
$$a^1$$
,
• $a^2 - \text{Gap}(., p)$

- linearly transferable payoffs for $p_1 \ge p_1^*$,
- convexity of mechanism a^2

• Player 1 (i.e., $l_1 < l_2$) gets the entire Gap!

• a^2 is an example of mechanism attaining such payoffs.

- Why?
 - mix and match offers that cannot be refused:

- linearly transferable payoffs for $p_1 \geq p_1^*$,
- convexity of mechanism a^2 .
• Player 1 (i.e., $l_1 < l_2$) gets the entire Gap!

• a^2 is an example of mechanism attaining such payoffs.

- Why?
 - mix and match offers that cannot be refused:

- linearly transferable payoffs for $p_1 \geq p_1^*$,
- convexity of mechanism a^2 .
- https://bwm-payoffs.streamlit.app/

Outline

Introduction

2 Model

- 3 Benchmarks
- Offer design
- 5 Random monopoly payoff bound

6 The Gap

Conclusions

- A natural modification of a standard random-proposer bargaining has unique payoffs under
 - single good plus transfers, private values environment,
 - two types for each player.
- A proof of concept better results and a general theory would be nice:
 - more types,
 - other environments,
 - better implementation results.