Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto
January 12, 2024

Outline

(1) Introduction

(2) Model

(3) Benchmarks

(a) Offer design
(5) Random monopoly payoff bound
(6) The Gap
(7) Conclusions

Introduction

- Business partners want to cease partnership. Their firm cannot be divided, and if one partner keeps it, the other expects a compensation.
- Two countries negotiate a peace treaty, with land swaps and reparations (or economic aid) on the table.
- Coalition parties negotiate an agreement with a support for policy traded off against number of cabinet positions.
- https://bwm-payoffs.streamlit.app/

Introduction

- Bargaining - one of the longest-studied problems in economic theory ("bilateral monopoly" before [Nash 50])
- No satisfactory solution for incomplete information:
- cooperative solutions: (Harsanyi 72), (Myerson 84),
- large literature on bargaining over prices:
- one-sided: uniqueness in Coasian bargaining with a gap,
- two-sided: large set of equilibria, possible refinements to eliminate some (Ausubel, Crampton, Deneckere 02 and others).
- Goal: show that a natural modification of a standard random-proposer bargaining has a "unique" outcome under
- single good plus transfers environment,
- private values (two types for each player).

Introduction

- Bargaining with sophisticated offers in real world
- menus,
- menus of menus ("I divide, you choose"),
- mediation, arbitration (example: "trial by gods"),
- change in bargaining protocols,
- deadlines or delays, etc.
- Challenges:
- how to model mechanisms as actions?
- signaling.

Introduction

- Benchmarks:
- Complete information (Rubinstein 84)
- Informed principal with private values (Maskin Tirole, 90)
- informed principal types get their monopoly payoff,
- private information of the principal does not matter in private values case.
- One-sided incomplete information (Peski 22),
- uninformed player and some of the informed player types get random monopoly payoff,

Introduction

Results

- Suppose each player has two types and, w.l.o.g., that $I_{1}<I_{2}$.

Introduction

Results

- Suppose each player has two types and, w.l.o.g., that $I_{1}<I_{2}$.
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As $\delta \rightarrow 1$, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

Introduction

Results

- Suppose each player has two types and, w.l.o.g., that $I_{1}<I_{2}$.
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As $\delta \rightarrow 1$, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

Introduction
 Results

- Suppose each player has two types and, w.l.o.g., that $I_{1}<I_{2}$.
- Theorem 1: For each discount factor, each player expects at least their random monopoly payoff.
- Theorem 2: As $\delta \rightarrow 1$, ex ante expected payoffs of player 1 converge to a feasible maximum subject to a constraint that player 2 types get their random monopoly payoffs.

Outline

(2) Model

- Bargaining game
- Mechanisms and Implementation
- Equilibrium
- Commitment
(3) Benchmarks

4 Offer design
(5) Random monopoly payoff bound

Model

Environment

- Two players $i=1,2$, sometimes third player ("mediator").
- Single good and transfers
- Preferences: $q_{i} t_{i}-\tau_{i}$,
- t_{i} - type (valuation) of player i,
- q_{i} - probability that pl. i gets the good,
- τ_{i} - transfer from player i
- feasibility: $q_{1}+q_{2} \leq 1, q_{i} \geq 0, \tau_{1}+\tau_{2} \leq 0$,

Model

Bargaining game

- Bargaining game
- multiple rounds until offer is accepted, discounting $\delta<1$,
- random proposer: player i is chosen with prob. $\beta_{i} \geq 0$, where $\beta_{1}+\beta_{2}=1$,
- proposer offers a mechanism,
- if the offer is accepted, it is implemented, and the bargaining game ends.
- Perfect Bayesian Equilibrium:
- no updating beliefs about player i after -i's action.
- public randomization plus cheap talk.

Model

Feasible payoffs

- Payoff vector $u(. \mid q, \tau) \in R^{T_{1} \cup T_{2}}$ in allocation $q_{i}(),. \tau($.$) :$

$$
u_{i}\left(t_{i} \mid q, \tau\right)=\sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(t_{i}, t_{-i}\right)-\tau_{i}\left(t_{i}, t_{-i}\right)\right) \text { for each } t_{i}
$$

- Allocation $q_{i}(),. \tau($.$) is IC given beliefs p$ iff

$$
u_{i}\left(t_{i} \mid q, \tau\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(s_{i}, t_{-i}\right)-\tau_{i}\left(s_{i}, t_{-i}\right)\right) \text { for each } t_{i}, s_{i} \text {. }
$$

- Correspondence of feasible and IC payoffs:

- The geometry of the correspondence $\mathcal{U}($.$) is the true "parameter" of$ the model.

Model

Feasible payoffs

- Payoff vector $u(. \mid q, \tau) \in R^{T_{1} \cup T_{2}}$ in allocation $q_{i}(),. \tau($.$) :$

$$
u_{i}\left(t_{i} \mid q, \tau\right)=\sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(t_{i}, t_{-i}\right)-\tau_{i}\left(t_{i}, t_{-i}\right)\right) \text { for each } t_{i}
$$

- Allocation $q_{i}(),. \tau($.$) is IC given beliefs p$ iff

$$
u_{i}\left(t_{i} \mid q, \tau\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(s_{i}, t_{-i}\right)-\tau_{i}\left(s_{i}, t_{-i}\right)\right) \text { for each } t_{i}, s_{i}
$$

- Correspondence of feasible and IC payoffs:

- The geometry of the correspondence $\mathcal{U}($.$) is the true "parameter" of$ the model.

Model

Feasible payoffs

- Payoff vector $u(. \mid q, \tau) \in R^{T_{1} \cup T_{2}}$ in allocation $q_{i}(),. \tau($.$) :$

$$
u_{i}\left(t_{i} \mid q, \tau\right)=\sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(t_{i}, t_{-i}\right)-\tau_{i}\left(t_{i}, t_{-i}\right)\right) \text { for each } t_{i}
$$

- Allocation $q_{i}(),. \tau($.$) is IC given beliefs p$ iff

$$
u_{i}\left(t_{i} \mid q, \tau\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(s_{i}, t_{-i}\right)-\tau_{i}\left(s_{i}, t_{-i}\right)\right) \text { for each } t_{i}, s_{i}
$$

- Correspondence of feasible and IC payoffs:

$$
\mathcal{U}(p)=\{u(. \mid q, \tau):(q, \tau) \text { is IC given } p\} \subseteq R^{T_{1} \cup T_{2}}
$$

- The geometry of the correspondence $\mathcal{U}($.$) is the true "parameter" of$ the model.

Model

Feasible payoffs

- Payoff vector $u(. \mid q, \tau) \in R^{T_{1} \cup T_{2}}$ in allocation $q_{i}(),. \tau($.$) :$

$$
u_{i}\left(t_{i} \mid q, \tau\right)=\sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(t_{i}, t_{-i}\right)-\tau_{i}\left(t_{i}, t_{-i}\right)\right) \text { for each } t_{i}
$$

- Allocation $q_{i}(),. \tau($.$) is IC given beliefs p$ iff

$$
u_{i}\left(t_{i} \mid q, \tau\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(s_{i}, t_{-i}\right)-\tau_{i}\left(s_{i}, t_{-i}\right)\right) \text { for each } t_{i}, s_{i}
$$

- Correspondence of feasible and IC payoffs:

$$
\mathcal{U}(p)=\{u(. \mid q, \tau):(q, \tau) \text { is IC given } p\} \subseteq R^{T_{1} \cup T_{2}}
$$

- The geometry of the correspondence $\mathcal{U}($.$) is the true "parameter" of$ the model.

Model

Feasible payoffs

- Payoff vector $u(. \mid q, \tau) \in R^{T_{1} \cup T_{2}}$ in allocation $q_{i}(),. \tau($.$) :$ $u_{i}\left(t_{i} \mid q, \tau\right)=\sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(t_{i}, t_{-i}\right)-\tau_{i}\left(t_{i}, t_{-i}\right)\right)$ for each t_{i}.
- Allocation $q_{i}(),. \tau($.$) is IC given beliefs p$ iff

$$
u_{i}\left(t_{i} \mid q, \tau\right) \geq \sum_{t_{-i}} p\left(t_{-i}\right)\left(t_{i} q_{i}\left(s_{i}, t_{-i}\right)-\tau_{i}\left(s_{i}, t_{-i}\right)\right) \text { for each } t_{i}, s_{i} \text {. }
$$

- Correspondence of feasible and IC payoffs:

$$
\mathcal{U}(p)=\{u(. \mid q, \tau):(q, \tau) \text { is } \mathbb{C} \text { given } p\} \subseteq R^{T_{1} \cup T_{2}}
$$

- The geometry of the correspondence $\mathcal{U}($.$) is the true "parameter" of$ the model.

Model

Mechanisms

- Game G:
- players: 1, 2, and mediator (whose payoff is a non-negative transfer),
- finite or compact actions,
- continuous outcome function that maps actions to an allocation of a good and a transfer,
- always assume public randomization.
- For each p, the set of equilibrium payoff vectors

$$
m(p ; G) \subseteq \mathcal{U}(p)
$$

- Equilibrium correspondence:

$$
m(. ; G): \Delta T \rightrightarrows R^{T_{1} \cup T_{2}}, m_{G} \subseteq \mathcal{U}
$$

Model

Mechanisms

- Real mechanism is a correspondence m for which there exists a game G such that $m=m(. ; G)$.
- Real mechanism m is
- u.h.c.,
- $m \subseteq \mathcal{U}$,
- non-empty-valued, and
- convex valued.

Model

Mechanisms

- (Abstract) mechanism is correspondence m st.
- m is u.h.c.,
- $m \subseteq \mathcal{U}$,
- non-empty valued,
- it can be approximated by continuous functions $m_{n}: \Delta T \rightarrow R^{T_{1} \cup T_{2}}$, $m_{n} \subseteq \mathcal{U}$ such that

$$
\lim _{n \rightarrow \infty} \max _{p} \min _{v, q: v \in m(q)} d\left(\left(m_{n}(p), p\right),(v, q)\right)=0
$$

where d is the Euclidean distance on $\Delta T \times R^{T_{1} \cup T_{2}}$.

- The space of mechanism is compact* under Hausdorff distance induced by d.

Model

Theorem

Any real mechanism is an (abstract) mechanism.
For any (abstract) mechanism m, there is a sequence of real mechanisms m_{n} that "approximate" m :

$$
\lim _{n \rightarrow \infty} \max _{u, p: u \in m_{n}(p)} \min _{v, q: v \in m(q)} d((u, p),(v, q))=0
$$

- First part: use Michael's Theorem.
- Second part: construct a game:
- mediator names the beliefs p,
- given p, use virtual Bayesian implementation of (Abreu Matsushima 92).

Model

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \triangle A$ - randomly chosen mechanism according to distribution α.
- δm - discounted mechanism m.
e $I .(\mathrm{m})$ - information revelation game: public randomization plus i's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- IP (m) - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ - randomly chosen mechanism according to distribution α.
- δm - discounted mechanism m.
- $I_{i}(m)$ - information revelation game: public randomization plus i 's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- $I P_{i}(m)$ - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \triangle A$ - randomly chosen mechanism according to distribution α.
- δm - discounted mechanism m.
- $I_{i}(m)$ - information revelation game: public randomization plus i 's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- $I P_{i}(m)$ - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \triangle A$ - randomly chosen mechanism according to distribution α
- δm - discounted mechanism m.
- $I_{i}(m)$ - information revelation game: public randomization plus i 's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- $I P_{i}(m)$ - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \triangle A$ - randomly chosen mechanism according to distribution α.
- δm - discounted mechanism m.
- $I_{i}(m)$ - information revelation game: public randomization plus i's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- $I P_{i}(m)$ - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \triangle A$ - randomly chosen mechanism according to distribution α.
- δm - discounted mechanism m.
- $I_{i}(m)$ - information revelation game: public randomization plus i's cheap talk followed by m.
- $M M_{i}(A)$ - menu of mechanisms $a \in A$ for player i (including p.r. and cheap talk by i).
- $I P_{i}(m)$ - informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{n, m\}: n \text { is a mechanism }\right\}
$$

Model

Bargaining game

- Bargaining mechanism : the largest fixed point \mathcal{B} of

$$
\mathcal{B}=\left(I P_{1}(\delta \mathcal{B})\right)^{\beta_{1}}\left(I P_{2}(\delta \mathcal{B})\right)^{\beta_{2}}
$$

Model

Equilibrium

- Equilibrium: definition
- modular (one-shot deviation principle), extends to the existence in bargaining game,
- PBE = WPBE + "no updating after the other player actions",
- if restricted to real mechanisms, approximate (i.e., ε-like) equilibrium.
- Equilibrium: existence
- space of (abstract) mechanisms is compact,
- if A finite, approximate each mechanism by a payoff function and apply Brouwer FPT,
- extend to compact A (cheap talk is important),
- public randomization is important.

Model

- Players are not committed to future offers.
- Players are committed to implementing a mechanism once offered and accepted:
- hence, less commitment than in the limited commitment literature (V. Skreta and L. Doval).
- Relevant for many situations
- good allocation with no backsies,
- bargaining over protocol,
- Lack of commitment is a restriction on the space of mechanisms,
- Commitment is not necessarily helpful to the agent who can exercise it.

Outline

(3) Benchmarks

- Complete information
- Informed principal
- One-sided incomplete information
(4) Offer design
(5) Random monopoly payoff bound

Benchmarks

- Claim: Assume $t_{1}<t_{2}$ are known. Then, in each equilibrium, player i gets $\beta_{i} t_{2}$.
- Special features:
- linearly transferable payoffs,
- endogenous interdependent value:
- total surplus $=t_{2}$,
- each player gets share of surplus equal to their bargaining power:

Benchmarks

- Claim: Assume $t_{1}<t_{2}$ are known. Then, in each equilibrium, player i gets $\beta_{i} t_{2}$.
- Proof: Suppose $i=1$ (the other argument is analogous). Let

$$
x^{*}=\frac{1}{t_{2}} \min _{u \in \mathcal{B}} u_{1} .
$$

- If $x^{*}<\beta_{1}$, player 1 has a profitable deviation:
- reject any offer of player 2,
- player 1 offer: player 2 gets the good and pays $\left(1-\delta\left(1-x^{*}\right)\right) t_{2}$ to player 1,
- the offer will be accepted.

Benchmarks

Informed principal

- (Random) informed principal with private values $\left(\beta_{i}=1\right.$ or $\left.\delta=0\right)$:
- monopoly payoff:

$$
M\left(t_{i} ; p_{-i}\right)=\max _{\tau} p_{-i}\left(t_{-i} \leq \tau\right) t_{i}+\left(1-p_{-i}\left(t_{-i} \leq \tau\right)\right) \tau
$$

- If player i is a proposer, she offers the monopoly price to $-i$, which is accepted (the game ends),
- i 's expected payoff is $M\left(t_{i} ; p_{-i}\right)$.
- Special features:
- continuation value $=0$ (and it does not depend on beliefs)
- private information of the principal does not matter due to private values.

Benchmarks

- One-sided incomplete information $\left(p_{i} \in\{0,1\}\right.$, i.e., i is uninformed):
- The equilibrium payoffs are unique and implemented by random monopoly mechanism:
- with probability β_{j}, agent j gets the good:
- if so, she offers monopoly price to $-j$,
- player i 's expected payoff of $\beta_{i} M\left(t_{i} ; p_{-i}\right)$,
- some player -i's types may get a bit more than $\beta_{-i} M\left(t_{-i} ; p_{i}\right)$,
- Special features:
- random monopoly mechanism is interim efficient.

Outline

4) Offer design

- Accept or reject decisions
- Signaling

Offer design

- i makes an offer, $-i$ decides whether to accept or reject:

$$
I P_{i}(m)=M M_{i}\left\{M M_{-i}\{m, a\}: a \text { is mechanism }\right\}
$$

- Goal: design offers that will be accepted.
- Two problems:
- \Rightarrow player -i may have reasons to refuse the offer,
- signaling: (possibly, off-path) offers lead to belief updating $p_{i} \rightarrow q_{i}$.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

- m is a continuation mechanism.
- a is an offer that is accepted exactly as it is.

Offer design

Accept or reject decisions

Definition

Mechanism a is an offer that player - i cannot refuse given m, if $\forall p_{i}, p_{-i}, q_{-i}, \forall u \in a\left(p_{i}, p_{-i}\right)$, and $\forall v \in m\left(p_{i}, q_{-i}\right)$,
u is undominated by v.

Offer design

Accept or reject decisions

Definition

Mechanism a is an offer that player -i cannot refuse given m, if $\forall p_{i}, p_{-i}, q_{-i}, \forall u \in a\left(p_{i}, p_{-i}\right)$, and $\forall v \in m\left(p_{i}, q_{-i}\right)$,
u is q_{-i}-undominated by v.
(i.e., there is a q_{-i} positive prob. type t_{-i} such that $u_{-i}\left(t_{-i}\right) \geq v_{-i}\left(t_{-i}\right)$).

Offer design

Accept or reject decisions

Lemma

Suppose that

- a is an offer that player -i strictly cannot refuse given mechanism m and
- a is a payoff function st. $I_{-i}(a)=a$. Then,

$$
M M_{-i}\{m, a\} \subseteq a .
$$

Offer design

Accept or reject decisions

- For any two mechanisms m and a, there alwats exists a continuous $w: \Delta T \rightarrow \mathbb{R}$ such that

$$
\left(a+_{-i} w\right)_{j}(p)= \begin{cases}a_{i}(p)+w(p) & j=-i \\ a_{i}(p)-w(p) & j=i\end{cases}
$$

cannot be refused by $-i$ given continuation m.

Offer design

Signaling

- Two problems:
- player -i may have reasons to refuse the offer,
$-\Rightarrow$ signaling: (possibly, off-path) offers lead to belief updating $p_{i} \rightarrow q_{i}$.
- If $u \in I P_{i}(m)\left(p_{i}, p_{-i}\right)$ is an equilibrium payoff in the informed principal with continuation m, and a is an offer that cannot be refused, then there must be belief q_{i} and continuation payoff $v \in a\left(q_{i}, p_{-i}\right)$ st.

$$
u_{i} \geq v_{i}
$$

Offer design

Signaling

- Suppose that a, b are offers that cannot be refused given m

Offer design

Signaling

- Suppose that a, b are offers that cannot be refused given m

Offer design

Signaling

- Suppose that a, b are offers that cannot be refused given m

Offer design

Signaling

- Suppose that a, b are offers that cannot be refused given m

Outline

(1) Introduction

(2) Model
(3) Benchmarks

4 Offer design
(5) Random monopoly payoff bound

- Random monopoly bound
- Proof

Random monopoly

- From now on, assume two types for each player $T_{i}=\left\{I_{i}, h_{i}\right\}$:
- p_{i} - probability of type h_{i}.
- W.I.o.g. $I_{1}<I_{2}$. I focus on

$$
0 \leq I_{1}<I_{2}<h_{1}<h_{2} .
$$

Random monopoly

Theorem

For each $\delta<1$, each $u \in \mathcal{B}(p)$, each player i, each t_{i},

$$
u_{i}\left(t_{i}\right) \geq \beta_{i} M_{i}\left(t_{i} ; p_{-i}\right)
$$

Random monopoly

- Each player gets at least their random monopoly payoff.
- In many cases, Theorem 2 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
- $\beta_{i} \in\{0,1\}$,
- $p_{i} \in\{0,1\}$ for one of the players,
- $I_{1}=I_{2}$ or $I_{2}=h_{1}$ or $h_{1}=h_{2}$.
- In general, there is a gap between random monopoly payoffs and efficiency.

Random monopoly

- The idea is to reproduce the complete info argument. Fix player i.
- The smallest equilibrium random monopoly share:

$$
x^{*}=\min _{u \in \mathcal{B}} \min _{t_{i}} \frac{u_{i}}{M_{i}\left(t_{i} ; p_{-i}\right)} .
$$

Random monopoly

Proof:

- The set of all feasible and IC payoffs that give player i at least x share of her monopoly payoffs:

$$
A_{x}^{i}(p)=\left\{u \in \mathcal{U}(p): u_{i} \geq x M_{i}\left(. ; p_{-i}\right)\right\}
$$

- We check that

$$
\delta \mathcal{B} \subseteq \delta A_{x^{*}}^{i} \subseteq A_{1-\delta\left(1-x^{*}\right)}^{i}
$$

> - Instead of delay, with prob. δ, deliver the payoffs now, and, with prob. $1-\delta$, give player i his monopoly payoff.

Random monopoly

Proof:

- The set of all feasible and IC payoffs that give player i at least x share of her monopoly payoffs:

$$
A_{x}^{i}(p)=\left\{u \in \mathcal{U}(p): u_{i} \geq x M_{i}\left(. ; p_{-i}\right)\right\}
$$

- Then,

$$
\mathcal{B} \subseteq A_{x^{*}}^{i} .
$$

- We check that

$$
\delta \mathcal{B} \subseteq \delta A_{x^{*}}^{i} \subseteq A_{1-\delta\left(1-x^{*}\right)}^{i} .
$$

- Instead of delay, with prob. δ, deliver the payoffs now, and, with prob. $1-\delta$, give player i his monopoly payoff.

Random monopoly

- The set of all feasible and IC payoffs that give player i at least x share of her monopoly payoffs:

$$
A_{x}^{i}(p)=\left\{u \in \mathcal{U}(p): u_{i} \geq x M_{i}\left(. ; p_{-i}\right)\right\}
$$

- Then,

$$
\mathcal{B} \subseteq A_{x^{*}}^{i}
$$

- We check that

$$
\delta \mathcal{B} \subseteq \delta A_{x^{*}}^{i} \subseteq A_{1-\delta\left(1-x^{*}\right)}^{i}
$$

- Instead of delay, with prob. δ, deliver the payoffs now, and, with prob. $1-\delta$, give player i his monopoly payoff.

Random monopoly

Proof:

- Goal: find mechanism a st.
- a cannot be refused given $A_{1-\delta\left(1-x^{*}\right)}^{i}$ and
- $a \subseteq A_{1-\delta\left(1-x^{*}\right)}^{i}$, i.e, each type t_{i} receives payoff at least

$$
\geq\left(1-\delta\left(1-x^{*}\right)\right) M_{i}\left(t_{i} ; p_{-i}\right) .
$$

- If $x^{*}<\beta_{i}$, complete information argument shows that player i has a profitable deviation.

Random monopoly

Lemma

For each x, there exists mechanism $a^{i}(x) \subseteq A_{x}^{i}$ such that

- $a^{i}(x)$ cannot be refused given A_{x}^{i},
- $a^{i}(x)$ is (mostly) payoff function such that $I_{-i}\left(a^{i}(x)\right)=a^{i}(x)$.
- https://bwm-payoffs.streamlit.app/

Outline

(1) Introduction

(2) Model

(3) Benchmarks

4 Offer design
(5) Random monopoly payoff bound

(6) The Gap

(7) Conclusions

The Gap

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

- The gap is not larger than

$$
\operatorname{Gap}(p) \leq 6.25 \% \text { of } h_{2} \text { for all } p .
$$

https://bwm-payoffs.streamlit.app/

The Gap

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$
\operatorname{Gap}(p)=\max _{u \in \mathcal{U}(p) \text { st. } \forall_{i, t_{i}} u_{i}(t) \geq \beta_{i} M_{i}\left(t_{i} \mid p\right)} p_{1} \cdot\left(u_{1}-\beta_{1} M_{1}(. \mid p)\right)
$$

- The gap is not larger than

https://bwm-payoffs.streamlit.app/

The Gap

- In general, Theorem 2 does not pin down the equilibrium payoffs, as the random monopoly mechanism is not interim efficient.
- The gap between the largest ex ante (expected) payoffs and random monopoly payoffs:

$$
\operatorname{Gap}(p)=\max _{u \in \mathcal{U}(p) \text { st. } \forall_{i, t_{i}} u_{i}(t) \geq \beta_{i} M_{i}\left(t_{i} \mid p\right)} p_{1} \cdot\left(u_{1}-\beta_{1} M_{1}(. \mid p)\right)
$$

- The gap is not larger than

$$
\operatorname{Gap}(p) \leq 6.25 \% \text { of } h_{2} \text { for all } p
$$

https://bwm-payoffs.streamlit.app/

The Gap

Theorem

For each p,

$$
\lim _{\delta \rightarrow 1} \sup _{u \in \mathcal{B}(p)}\left|p_{1} \cdot u_{1}-\left[p_{1} \cdot \beta_{1} M_{1}(. \mid p)+\operatorname{Gap}(p)\right]\right|=0
$$

- As $\delta \rightarrow 1$, player 1 equilibrium ex ante payoffs converge to maximum possible subject to feasibility, IC, and random monopoly constraint.
- player 1's payoffs are determined uniquely in ex ante sense,
- player 2's payoffs are determined uniquely in the interim sense.

The Gap

- Player 1 (i.e., $I_{1}<I_{2}$) gets the entire Gap!
- a^{2} is an example of mechanism attaining such payoffs.
- mix and match offers that cannot be refused:
- $a^{2}-\operatorname{Gap}\left(., p_{2}^{*}\right)$,
- linearly transferable payoffs for $p_{1} \geq p_{1}^{*}$,
- convexity of mechanism a^{2}.
- https://bwm-payoffs.streamlit.app/

The Gap

- Player 1 (i.e., $I_{1}<I_{2}$) gets the entire Gap!
- a^{2} is an example of mechanism attaining such payoffs.
- Why?
- mix and match offers that cannot be refused:
- a^{1},
- $a^{2}-\operatorname{Gap}\left(., p_{2}^{*}\right)$,
- linearly transferable payoffs for $p_{1} \geq p_{1}^{*}$,
- convexity of mechanism a^{2}.
- https://bwm-payoffs.streamlit.app/

The Gap

- Player 1 (i.e., $I_{1}<I_{2}$) gets the entire Gap!
- a^{2} is an example of mechanism attaining such payoffs.
- Why?
- mix and match offers that cannot be refused:
- a^{1},
- $a^{2}-\operatorname{Gap}\left(., p_{2}^{*}\right)$,
- linearly transferable payoffs for $p_{1} \geq p_{1}^{*}$,
- convexity of mechanism a^{2}.
- https://bwm-payoffs.streamlit.app/

Outline

(1) Introduction

(2) Model

(3) Benchmarks

(a) Offer design
(5) Random monopoly payoff bound
(6) The Gap
(7) Conclusions

Conclusions

- A natural modification of a standard random-proposer bargaining has unique payoffs under
- single good plus transfers, private values environment,
- two types for each player.
- A proof of concept - better results and a general theory would be nice:
- more types,
- other environments,
- better implementation results.

